Computer Club Talk Series

Storage Systems

Sponsored by Green Hills Software

Green Hills make the world's highest performing compilers, most secure real-time operating systems, revolutionary debuggers, and virtualization solutions for embedded systems.

Storage Systems

Outline:

- Background
- •RAID
- Hardware RAID Controllers
- Logic Volume Manager (Ivm)
- •ZFS
- btrfs

Storage Systems

- Where this is useful
 - Network Access Storage servers
 - ... or just about any server
- Presentation goal:
 - Enough knowledge to know what you can do
 - (too much material for workshop-style coverage)

Background: Disks

- Hard disks
 - Spinning platters
 - Unpredictable performance
 - High failure rate
 - Cheap, high capacity
- Solid State Disks (SSDs)
 - No moving parts
 - No seek delays
 - More reliable?
 - Newfangled, poorly supported

RAID

- Problems:
 - Drives are unreliable
 - High capacity drives are too expensive
- Solution:
 - Redundant Array of Inexpensive Disks

RAID: Striping

- Idea:
 - Split data across multiple physical drives
 - Spread data out so we can access it in parallel

Photo credit: wikipedia http://en.wikipedia.org/wiki/ File:RAID 0.svg

RAID: Mirroring

- Write everything onto two disks
 - If one fails, we have a backup
- Performance
 - Writes: slower
 - Two writes done in parallel
 - ... but seek delays may be different
 - Reads: faster
 - Read from whatever one is convenient
 - or a little of both

RAID: Parity

- Idea:
 - Take XOR of all the bits in a striping setup
 - Can now calculate missing bits if one goes down
- Distributed parity
- Extra parity disks

RAID: Levels

- Look them up on wikipedia
 - http://en.wikipedia.org/wiki/RAID#Standard_levels
- Most popular:
 - RAID 0: Striping
 - RAID 1: Mirroring
 - RAID 6: Striping + double distributed parity
- Hot spares

Hardware RAID

- Fully in the hardware
 - Software is oblivious
- Advantages
 - Sometimes faster
 - Easier to configure
- Disadvantages
 - Oblivious to disk contents
 - May "rebuild" uninitialized data
 - Cannot migrate disks across different hardware

LVM: Overview

- Linux Logical Volume Manager
- Layer of indirection between disks and filesystem
- Features:
 - RAID
 - Easy addition/removal of capacity
 - Copy-on-write snapshotting
 - Thin provisioning
 - etc

LVM: Layout

- Physical Volumes:
 - Drives
 - Or more exotic things: partitions, files in existing file systems, etc
- Volume Group:
 - Set of Physical Volumes
 - (possibly only one)
- Logical Volume:
 - Exported "disk partitions"
 - ie. where you actually put your file system

LVM: Layout

Photo credit: wikipedia http://en.wikipedia.org/wiki/File:RAID_0.svg

LVM: Conclusion

- Advantages
 - Lots of nice features
- Disadvantages
 - Decreased compatibility
 - Increased complexity
 - More things to go wrong
 - Oblivious to file system contents/format
 - Makes some operations more expensive (eg. snapshots)

ZFS: Overview

- Copy-on-write file system
 - ie. never write on top of live data
 - More robust (?)
- Features:
 - RAID
 - Easy addition/removal of capacity
 - Copy-on-write snapshotting
 - Thin provisioning
 - etc
 - ... look familiar?

ZFS: Comparison to LVM

- Advantages:
 - Aware of file system contents/structure
 - Faster rebuilds in sparse RAIDs, etc
 - Data integrity checks
 - And fixing if using a RAID
 - Copy-on-write volumes
- Disadvantages
 - Uses a lot of memory
 - Traditionally poorly supported under Linux
 - No longer an issue

btrfs

- Like ZFS, only... not ZFS
- Advantages over ZFS:
 - Not much...

NFS

- Network File System
- Export folders on local file systems as network-mountable volumes
- Fairly performant and reliable
- Security:
 - IP whitelisting and Unix permission bits
 - Need to trust ever host who can mount it
- Simple and functional

NFSv4

- Newer and better?
- Security improvements
 - ... very complicated

•

- Other improvements
 - ... more complexity