

Secure Sockets Layer

and

Transport Layer Security

Secure Sockets Layer

● Introduced by Netscape in 1995
● Initially a closed proprietary protocol
● SSL 3 protocol was published in 1996
● Standardized as Transport Layer Security (TLS)

in 1999
● OpenSSL developed based on public spec
● Mozilla uses NSS (Network Security Services)

originally developed by Netscape

Protocol

Client Server
Connect to port 443, send hello & version supported

Sends public key, random number, certificate

Complete DH exchange or encrypt random number

Certificate Authorities

Domain validation

Extended validation

Cost & complexity of certificates

What if the certificate authority is not
trustworthy?

● Certificate authorities have issued fraudulent
certificates

● Superfish spyware installed its own CA key
● PrivDog allowed any certificate without any

validation

Downgrade Attacks

● Old versions of SSL had security weaknesses
● Initial negotiation of supported versions is not

encrypted or authenticated
● Active attacker can block initial negotiation and

cause fallback to older, insecure version of SSL

Padding Oracle On Downgraded
Legacy Encryption (POODLE)

Unencrypted Message

Encrypted
block

Encrypted
block

Encrypted
block

The square-and-multiply algorithm

Calculate: n2 … n4 … n8 … n16 … n32 …

Example: n42 = n2 ⨉ n8 ⨉ n32

● Timing attacks
● Radio frequency emission
● Cache analysis

Problem: The square and multiply operations
differ in CPU time, power usage, and memory
access pattern

Data Compression Exploits

● Trick client into accessing various URLs
(eg embedded images, iframes, javascript)

● Make guesses at session cookie in URL
● If a substring matches, data compression will

shorten the message!
● Mitigate by not compressing headers

Even if the encryption is secure, the size of
messages may leak information

Compression Ratio Info-leak Made Easy (“CRIME")

TLS Heartbeat Extension
(RFC 6520)

Client Server

HeartbeatRequest length data...

HeartbeatResponse length data...

OpenSSL had a bug...

Client Server

HeartbeatRequest length data...

HeartbeatResponse length data...datadatadatadatadatadata

Heartbleed

● OpenSSL used the requested length rather
than the actual length in its response

● Returned whatever happened to be in that area
of memory

● Allowed reading up to ~64KB per request
● Potentially leaked private keys

Impact of exposed keys

● Can spoof the server
● If Diffie-Hellman was not used, exposes all prior

traffic
● Need to get new certificate for new key
● Need to revoke old certificate

Certificate Revocation

● Even if the certificate is free, revocation often
is not (Startcom wanted $25)

● How to communicate revoked status to
browsers?

 Online Certificate Status Protocol
(OCSP)

● Browser checks status of certificate with CA
● Typically unencrypted http
● Generally ignored on timeout
● Responses often lack nonce or expiration

Attacking Diffie-Hellman

The security of Diffie-Hellman key exchange is
based on the difficulty of finding discrete
logarithms in a finite field.

Logarithms have the property that the sum of
logarithms is equal to the logarithm of the
product, eg:

To break Diffie-Hellman, find logarithms of many
small primes, then combine them to find the logs
of larger numbers.

log(2) + log(3) = log(6)

Avoiding the precomputation attack

● Use a modulus large enough to make this
precomputation infeasible (2048+ bits)

● Don't use the same modulus as everyone else

● Use elliptic curve Diffie-Hellman

...but encryption is O(n3) for n-bit modulus

...but generating strong primes takes time

Conclusion

● Disable legacy weak crypto
● Don't allow downgrade to SSL 3
● Don't use RC4, DES or other weak algorithms
● Use ephemeral DH with ≥2048-bit modulus, or

elliptic curve
● If using finite-field DH, generate a custom

strong prime (see weakdh.org)
● Don't mix secure and insecure content

