

cmucc.org

Computer Club Talk Series

Sponsored by Green Hills Software

Green Hills make the world's highest performing compilers, most secure
real-time operating systems, revolutionary debuggers, and virtualization

solutions for embedded systems.

C++:
A Less Bad Systems Language

● Programming languages
● That aren't covered in the core curriculum
● That are useful

●Next Week: Real-Time Operating Systems
● Given by a Green Hills engineer
● ie. someone who is extremely qualified to
 talk about this

● Schedule: http://cmucc.org/talks
● Haskell, sed/awk, Verilog/FPGAs, and more

cmucc.org

S15 Talk Series: Second Wave

http://cmucc.org/talks

cmucc.org

Computer Club

● We exist! We do things other than this!

● Open Hacking Hours
– Every Saturday at 5pm, Cyert B6
– Join us in hacking on all kinds of neat projects

● Put skills from talk series to use!

● Retro Committee Meeting
– This Saturday at 5pm, Cyert B6
– Hack on and organize events related to

retrocomputing

cmucc.org

C++: A less bad language

● Quick poll:
– How many of you know C?
– How many of you know Java?

● Some other object-oriented language?

● C++
– A lot like C

● Almost backwards-compatible
● But a lot more features

– Too many?

cmucc.org

About this talk

● Too much C++ to cover this fast!
– You should read a book

● … but you won't
● Will try to mention:

– Cool features
– Dangerous features

● Gets increasingly vague
– “less important” material

● Use other resources!
– Nothing is covered in enough detail here
– See final slides

cmucc.org

Why C++

● Still low level
– Can get almost all the performance benefits of C

● And a few additional ones
● C-style linking

– (albeit using disgusting hacks)
● Almost automatic memory management

– … with a bit of work
● Powerful type system

– Catch errors at compile time
● Elegant and extensive standard library

– Still not nearly as large as Java, Python, etc

cmucc.org

C++11

● Major change

● Some of this talk is C++11-specific
– Hopefully this never matters to you

● May not be the default in your compiler
– More on compilers later

cmucc.org

Function Overloading

● Multiple implementations of same function name
– Different number and/or types of arguments

● Name mangling
– Function names are “mangled” by compiler to

produce object files compatible with C linkers
– Terrible hack, but works
– Used for other C++ features as well

● Disable with extern “C” { }
– To enable linking from C programs
– Disables function overloading, other C++ features

cmucc.org

References

● A “second name” for an existing variable
● A lot like a pointer

– But it will always point to valid memory!
● … hopefully

● Example:
int x = 5;
int& y = x;
assert(&y == &x);

int* z = nullptr;
y = *z; // don't do this!

cmucc.org

Namespaces

namespace foo {
void bar();

}

bar(); // will not compile!
foo::bar(); // will compile

{
using namespace foo;
bar(); // will compile

}

bar(); // will not compile

cmucc.org

Object Orientation

● Aids in creating modular code
– Better organization, reuseability

● Like a C struct, but with functions

● Inheritance
– Let's ignore this for now

cmucc.org

Objects in C++

● Probably the most obvious change from C
● How it works:

– Header file:
class MyClass {

int member_variable;
private:

void internal_method();
public:

void external_method();
};

– Implementation file:
void MyClass::internal_method() { … }
void MyClass::external_method() { … }

cmucc.org

Constructors

● Guaranteed to be called before before an object
comes into scope
– This is extremely useful— more on that later

● Header:
– No return type
– Name is the same as the class name
– Any arguments

● Overloading encouraged

● Invoked during variable declaration
– eg for class MyClass:

MyClass test_object(...);

cmucc.org

Constructors (cont)

● Initialization of member variables
– Happens before constructor body
– Initializer lists

● Allow you to call something other than default
constructor

● Example:
MyClass::MyClass(int var) :
member_variable(var)
{ }

cmucc.org

Default Constructor

● The no-arguments constructor

● Invoked implicitly in many cases
– Remember: A constructor is always called

● Implicitly defined default constructor
– Just default constructs everything
– Delete it by setting equal to delete

class MyClass {
MyClass() = delete;

}

cmucc.org

Copy Constructor

● Single augment, same type as class being
constructed

● Implicit invocations
– When passing by value

● Pass by const ref to avoid!

● Implicitly defined copy constructor
– Just copy constructs all elements
– Delete it by setting equal to delete

class MyClass {
MyClass() = delete;

}

cmucc.org

Converting Constructors

● Single-argument constructors

● Invoked implicitly when a conversion is needed
– Danger!

● explicit keyword
– Disables implicit calls

cmucc.org

Destructor

class MyClass {
~MyClass();

}

● Guaranteed to run when object goes out of scope
– Or when dynamically-allocated memory is freed

● Chance to free resources, etc

cmucc.org

Assignment Operator

MyClass& operator=(const MyClass& other);

● “Make this object the same as this other one”
● ie. just like with an int

cmucc.org

More Operators

● Methods with special meaning
– Some automatically created and called

● Easy ones:
– T operator+(const& T other) const;
– T operator-(const& T other) const;
– T operator==(const& T other) const;
– etc

● Should be fairly self-explanatory
– Implement them as makes sense for your class

● Or not at all

cmucc.org

Operators: Final thoughts

● Very convenient features

● Lots of potential headaches
– Watch out for implicit calls
– Be careful

cmucc.org

Object Creation

● Static allocation:
– MyClass test;

● Invokes default constructor
– MyClass test(...);

● Invokes appropriate overload
● Dynamic allocation

– MyClass* test = new MyClass(...);
– delete test;

– Do not mix malloc/free and new/delete!

cmucc.org

Class Templates

● Idea: Type-generic data structures, etc
● Template arguments

– inside < >
● Full class definition must be in header file

– Cannot be compiled without instantiation
● Example:

template<typename T>
struct LinkedListNode {

LinkedListNode<T> next*;
T data;

}

cmucc.org

Function Templates

● Same as class templates, but on a single function

● Example:
template<typename T>
struct LinkedListNode {

LinkedListNode<T> next*;
T data;

}

cmucc.org

Inheritance

● Less important (than in Java, etc) due to templates
● Very brief overview:

– General “base” class
● eg. Dictionary

– Specific “derived” class
● eg. HashMap

– Result:
● Write functions, etc to operate on base class

– Use them on the derived classes as well

● Good Object Oriented design is complicated
– Read a book or take 15-214

cmucc.org

Virtual Functions

● Allows derived class to override base class'
implementation of a function

● Virtual function table
– Created iff class contains a virtual function
– Used to resolve function calls

● Pure virtual functions
– No implementation
– Makes containing class “abstract”

● Cannot be instantiated
● Useful only as a base class

cmucc.org

Templates vs Inheritance

● Inheritance inherently hierarchal
– Templates much more generic

● Type safety
– Inheritance provides clear requirements

● Enforced by compiler
– Templates need whatever they use

● Compiler checks at instantiation
● Not always clear to programmer what is used

– Nasty compilation errors
● Dynamic vs Static

– Templates: Everything resolved at compile time
– Inheritance: Resolved at runtime

cmucc.org

Curiously Recurring Template
Pattern

● In case you feel insufficiently confused...

template<class T>
class Base
{

void foo();
};

class Derived : public Base<Derived>
{
 void foo();
};

http://en.wikipedia.org/wiki/Curiously_recurring_temp
late_pattern

file:///home/christian/ownCloud/
file:///home/christian/ownCloud/

cmucc.org

Standard Library

● Collection of useful classes and functions
– Data structures, file io, etc

● Lots of templates
● Very portable

– Pretty much anywhere C++ runs

● http://en.cppreference.com/w/
– Keep this up while writing code!

file:///home/christian/ownCloud/

cmucc.org

Boost

● The “less standard” library
– Features often pushed into standard library

● Moves (relatively) fast
– Often less elegant, user-friendly

● Encourages arguably terrible design
– Uses debatable C++ features

● Template metaprogramming
● excessive templatization
● functional programming

● Less bad with C++11?

● http://www.boost.org/

cmucc.org

Exceptions

● Use throw keyword to indicate error
– Throws an object (an “exception”)
– Program control passes to nearest try-catch block

● Up the call stack as needed
● Destructors called along the way

● try-catch block
– Case on exception object
– Handle the error

● Crashes if no try-catch block is found

cmucc.org

RAII

● Useful idiom for objects
– Heavily used in standard library and Boost

● Resource Acquisition Is Initialization

● Resource lifecycle:
– Initialized when acquired

● ie. in constructor
– De-initialized when released

● ie. in the destructor

cmucc.org

RAII (cont)

● Advantages
– No “used uninitialized” bugs!
– No “forgot to free” bugs!
– Elegance

● Disadvantages
– Cannot initialize based on an if-else statement
– Arrays automatically initialized with default

constructor
– etc

cmucc.org

Smart Pointers

● RAII pointers
– Allocate memory at declaration
– Free memory when out-of-scope

● Reference counting
– Keep track of reference count in copy constructor,

etc
– Enables sharing of smart pointer

● Small overhead
● Standard Library

– std::unique_ptr
● No ref counting

– std::shared_ptr
● Ref counting

cmucc.org

Move Constructors

● Usage example:
– Want to pass ownership of a unique_ptr

● Move Constructors:
– Similar to copy constructor
– Leave original in undefined state

● So we can steal resources, etc

● Implementation examples:
– std::unique_ptr

● Pass ownership of pointer
– std::vector

● Pass ownership of data field
– (which is a dynamically-allocated array)

cmucc.org

Move Constructors (cont)

● xvalue
– expiring object

● ie. one that can be moved from
– When:

● return values
– Since they are about to go out of scope

● std::move(var)
– Make a xvalue representing var
– var is left in undefined state

● Accepting xvalues as arguments
– Overload will only match if an xvalue is provided

as an argument
– void foo(T&& xval);

cmucc.org

Iterators

● Classes which “behave like pointers”
– ie. implement operator*

● Forward iterator
– Implement operator++ “like a pointer does”

● Random Access Iterator
– Implement operator[] “like a pointer does”

● Use in for loops:
std::vector<std::ifstream> v = get_files();
for(std::ifstream& file : v)

do_something(v);

cmucc.org

“Bad” Features

● Sometimes considered harmful
– “Overly complicated code”

● My opinion
– People should learn the language they work in
– Lots of useful features

● A more moderate opinion
– Google style guide:
– http://google-styleguide.googlecode.com/svn/trunk

/cppguide.html

● Not entirely clear what these features are
– … but the rest of this talk probably includes a lot

file:///home/christian/ownCloud/
file:///home/christian/ownCloud/

cmucc.org

std::function and Lambdas

● std::function
– Because C function pointer syntax is terrible
– std::function<ReturnType(ArgType1, ...)>

● Lambdas
– Lightweight functions
– Declared like regular variables

● Details beyond the scope of this talk
– And easy
– Google it

cmucc.org

Casting

● C casts considered harmful?
– No checks
– Syntax makes them easy to overlook
– C++ provides better options

● reinterpret_cast<T>(T)
– Casts between pointer types
– Or pointers to arithmetic types
– Covers most cases

● More casts
– Lots of options:

http://www.cplusplus.com/doc/tutorial/typecasting/

file:///home/christian/ownCloud/

cmucc.org

Compilers

● g++
– like gcc, but for C++
– Most common?

● clang++
– Nicer error messages

● much nicer
– Less widespread

● Dubious installation on Andrew machines
– Problematic with gdb

cmucc.org

Debugging

● Largely the same as C
– Which is good!

● Lots of tools, etc

● gdb

● valgrind

cmucc.org

Additional Resources:
Books

● Introduction:
Accelerated C++: Practical Programming by
Example

● By Andrew Koenig
● ISBN 860-1400402207
● Good for learning C++ from scratch

● Advanced:
Effective C++ and Effective Modern C++

● By Scott Meyers
● ISBN 978-0321334879 and 978-1491903995
● Collection of tips for improving your C++

cmucc.org

Additional Resources:
Reference/ Overview

● API Reference
– http://en.cppreference.com

● Language references/guides:
– http://www.cplusplus.com/doc/tutorial/

● More approachable
– http://en.cppreference.com/w/cpp/language

● More thorough

file:///home/christian/ownCloud/
file:///home/christian/ownCloud/
file:///home/christian/ownCloud/

	Slide 1
	Slide 2
	Slide 4

