

Verilog and FPGAs
Coding Hardware?

April 22, 2015
Lincoln Roop

Sponsored ByPresented By

So, What's the point of this talk?

● To give an overview of hardware description
languages, and explain how they differ from
conventional software programming.

● To explain enough digital logic for the idea of
HDLs to make sense.
– We'll do this first even though it's listed second.

– I apologize to any ECE majors in the room, this will
sound a lot like an 18-240 lecture but less in depth.

● Unfortunately we can't cover everything.
– There are entire semester-long classes in the ECE

department about this stuff.

Boolean Logic

● Logic Gates – Devices
that implement the
Boolean logic functions
(AND, OR, NOT, XOR,
etc.)

● Easy to discuss and
draw on paper, but can
we make them in the
real world?

Boolean Logic

● Purely mechanical examples:

– AND: If deadbolt is unlocked,
and doorknob is turned, door
opens.

– XOR: Think of a 3 way light
switch (the kind with switches
at the top and the bottom of a
flight of stairs).

● There are also plenty of more
intentional examples of this:
Old mechanical adding
machines, early punchcard
tabulators, etc.

Boolean Logic

● Small-Scale Integration ICs
(7400 series, 4000 series).

– These chips implement a few
gates on a small chip.

– Once upon a time, entire
CPUs and motherboards were
built out of these.

– Today, they're mostly used
when only a small amount of
additional logic is needed in
some more complex circuit.

74LS10 3x 3-input NAND Gate (in
somewhat obsolete DIP-14 package)

74LS10 Functional Diagram

Is Something Missing Here?

● Interconnected Boolean gates can be used to
implement any logic function, but there are some
problems.
– How long does it take for the output to be correct

after we change inputs? In theory-land this is
instantaneous. In the real world, the laws of physics
don't allow for that.

– Also, with just logic gates, we have no notion of
state. We can't store the result of some function and
do other things with it.

Memory Elements

● There's a lot to explain about memory, but it's
out of the scope of this talk.

● Instead, we'll just talk about registers as a
concept.

● Registers act a lot like a variable in a computer
program. We can store data in them and
modify or reuse that data later.

Memory Elements

● We can also have arrays of registers. This is
basically what RAM looks like from a programmer's
perspective.

● In the real world it gets a bit more complicated.
– DRAM requires periodic refresh cycles to keep the

information stored in it.

– Modern computers use a memory hierarchy with levels of
cache (smaller, faster memory) between the CPU and
main memory, and swap space (often called 'Virtual
Memory') on disk for when programs want more memory
than the system has.

● But we don't need to worry about that now.

Clocks

● A clock in digital logic is a
regular and periodic signal
used to keep different
parts of the circuit in time
with each other.

● The clock in a digital circuit
functions more like a
metronome than an actual
wall clock – its purpose is
to keep parts of the circuit
'in time' with each other.

1

0

Clocks

● Using clock-controlled
registers in a complex digital
circuit lets us deal with the
problem that combinational
logic doesn't work instantly.

● Timing in digital circuits can
get very complex, but for now
we can just assume that as
long as we don't run the
clock faster than the
combinational logic can work,
things will be OK.

Combinational
Logic

Register

Combinational
Logic

Register

Clock

Note: Clouds of combinational logic have nothing to do with Cloud Computing.

Example – Mixing Logic and
Registers

● Say we want to add up a
list of numbers.

● Using just combinational
logic, we can construct an
adder. Adding 2 terms is
easy, 3 is doable, but
beyond a certain point,
this doesn't really make
sense.

1,000

3,272

602

14,860

+ 2,713

???

Example – Mixing Logic and
Registers

● A 2-input adder will be
enough to get the job done if
we add some memory to the
design.

● We can store the output of the
adder in the register, and then
use the register's output as
one of the inputs to the adder.

● The other input will be the
numbers that we need to add.

+

Output Register

BA

Input Data

Example – Mixing Logic and
Registers

● Wait? We're going to use the
register as both an input and
the output?!?

● Sure, we can do this, but we
have to be careful.

● We need to be able to store 0
in the register on reset.

● And we need to clock the
register such that it will latch
the output of the adder only
when the adder is done with
each addition.

+

Output Register

BA

Input Data

Reset

Done

IC Design before automation

● Designing an IC is a complex process. You have to design
the high-level logic, and then translate that into physical
layout (actual transistors on silicon).

● Before automation tools, this was done entirely by hand.
– Block diagrams were drawn on paper.
– Gate-Level 'simulation' was done with breadboards or wire wrap

and lots of individual logic ICs.
– Actual silcon layout was done with colored tape and rulers on

very large pieces of paper at many many times actual size, and
then photo-reduced into masks for making chips.

IC Design before automation

● Manual design
worked fine for
simple things.
Most 8-bit CPUs
like the 6502 and
8080 would have
been designed
this way.

● It was still quite
involved and time-
consuming
though.

MOS Technology 6502 layout (1976).
This die contains 3,510 individual

transistors.

Intel Sandy Bridge CPU with integrated graphics (2011). This chip includes four x86-64 CPU
cores, an L3 cache, GPU, and memory controller all on a single die. This whole die contains

over 1 billion individual transistors (compare to 3,510 in the 6502).

IC Design before automation

● Manual design at the
silicon level is still
done for repetitive stuff
where even a small
improvement over
what automation can
do is significant –
mostly memory
devices like DRAM
and Flash.

4x4 Array of DRAM cells

Micron MT4C1024 1Mbit DRAM (Circa 1990). Most of the space on the chip is taken up by
a bunch of identical looking blocks of DRAM cells. This is a lot larger than our 4x4 cell
example (1 million cells arranged in a 2048 x 512 array as opposed to 16), but still tiny

compared to a modern DRAM IC which can easily contain 4Gbits or more.

IC Design Automation

● As you can see, designing a modern IC by
hand simply wouldn't be practical.

● So, as computers became more powerful,
Electronic Design Automation (EDA) tools were
developed, and used to design subsequent
generations of computers.

● Which then led to more complex computers,
and more complex design tools for designing
the next generation of computers.

Introduction – Hardware Description
Languages

● We'll talk more about the physical logic later
when we get to FPGAs.

● A Hardware Description Language (HDL) is
similar to a programming language, but is used
to model the behavior of hardware.

● The most common HDLs are Verilog and VHDL.
 I'm only going to discuss Verilog here since it's
the language used at CMU, and the one I am
most familiar with.

Basic Verilog

● I'm not going to start with “Hello,
World”.

● That's actually kind of tricky to
do in hardware.

– We'd have to deal with
interfacing to a display device.

– Or we could cheat and print
“Hello, World” on a piece of
colored glass and put a light
bulb behind it. But that would
be boring.

● Here's some basic Verilog.
Now let's go over what it does.

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

Basic Syntax

● Looks a lot like C.
● With enough

differences to be
annoying.

● 'begin' and 'end'
instead of curly
braces.

● Except when you use
other words.
– Module/endmodule is

the big one.

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

Basic Syntax

● Modules are like a class in an
object-oriented language.

● Modules can easily be
reused, or instantiated inside
other modules.

● Can you write an entire large
design in one module? Sure,
but that's basically the same
as writing an entire large C
program inside int main().

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

Input and Output

● An input to a module is a signal
that comes from outside the
module.

● An output of a module is a
signal that the module drives for
the outside world.

● There's also inout, which is
both. With this, you have to be
careful not to have multiple
things driving the same signal
at the same time.

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

Inputs and outputs
of the module are
like parameters of
a function, except
the 'return values'
are the outputs.

Signal Types

● There are many types of
signal in Verilog, but I'm
just going to cover wire
and reg.

● A wire behaves like a
literal piece of wire.
Wires have no sense of
memory, and are driven
by whatever they're
connected to.

● A reg behaves like a
latch, or a variable in a
software language.

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

This is a 4-bit wire
named 'a'.

This is a 5-bit reg
named 'out'.

Signal Widths

● Software languages typically
have different size types (char,
int, long, double, etc.)

● Since we're working in hardware
here, we have to manually specify
the width of signals in bits.

● When we declare a signal (wire,
reg, etc.) we do this by putting
some numbers in square
brackets after the type.

● When we assign a value to
something, we use the notation
N'base.

● If your signal isn't wide enough to
hold a particular value, the extra
bits get cut off.

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

This is a 4-bit wire
named 'a'.

This is a 5-bit reg
named 'out'.

This assigns the
value 0 (5 bits
wide) to 'out'.

Useful Tip

● So what's this `default_nettype none
business?

● One annoying default in Verilog is that if
you don't explicitly declare a signal, it is
assumed to be a 1-bit wire.

● This can lead to very annoying bugs if you
make a typo in a signal name.

● The ` character denotes a preprocessor
directive (similar to # in C).
default_nettype none switches the default
net type from wire to none, so if you typo
a signal name you will get a compiler error
instead of a broken design.

● Use it. I guarantee it will save you from
hours of head scratching and quality time
spent with the waveform viewer that could
be better spent doing other things.

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

This simple line of
code will save you
much anguish.

Always Blocks

● Code inside an always block is
evaluated by the simulator (or
implemented in the FPGA)
whenever items in its sensitivity
list change.

● The sensitivity list is the list of
items inside parentheses after the
@ symbol.

● This list can contain any number of
signals, as well as a few conditions
on the signals. The main ones are
posedge and negedge, which
mean that the block should only be
evaluated on the positive or
negative edge of the signal,
respectively.

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

What's an edge?

● An edge is a transition in a signal. We usually think about edges when we're
dealing with clocks.

● A positive edge is a transition from low (0) to high (1).

● A negative edge is a transition from high (1) to low (0).

● Signals that change on an edge (for instance the stuff in our always @ (posedge
clock) block are known as edge-triggered signals.

Clock

1

0

Positive Edge Negative Edge

What's going on inside here?

● In our basic example, there's one
if...else statement inside our
always block. What it does is
pretty simple.

● The behavior for if (reset) will
happen if the reset signal is high.
Here, we set the out register to all
zeros, like hitting the clear button
on a calculator.

● The else block handles the case
where reset is not active. Here,
out is assigned to be the value of
a+b. Remember that this is within
an always @ (posedge clock)
block, so the output at the out
register only changes on the clock
edge, and the a and b inputs must
be valid on the clock edge.

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

So what's this <= thing?

● You may have noticed that the
variable assignments inside the
block use a “<=” operator instead of
just “=”.

● This indicates non-blocking
assignment, which means that the
assignments are not dependent on
any other assignments during the
same clock period.

● Standard 'good practices' are to use
non-blocking assign in clocked logic
(for instance always @ (posedge
clock)), and blocking assign in
combinational logic (for instance a
continuous assign statement).

● You can read more about this at
http://www.asic-world.com/tidbits/blocking.html

`default_nettype none

module fourbit_adder(

 input wire[3:0] a,

 input wire[3:0] b,

 input wire reset,

 input wire clock,

 output reg[4:0] out

);

 always @ (posedge clock) begin

 if(reset) begin

 out <= 5'b0;

 end else begin

 out <= a + b;

 end

 end

endmodule //fourbit_adder

http://www.asic-world.com/tidbits/blocking.html

OK, so how does this become
hardware?

● We've seen some basic Verilog code, but how does this
code turn into actual hardware?

● We could design a custom IC, but the initial set-up costs
for that are on the order of millions of dollars.

● We could manually wire together a bunch of 7400-
series logic like it's 1985, but then why bother with
Verilog?

● Or, we could use some form of programmable logic.

Definition: Programmable Logic

● Programmable logic circuits are digital circuits (computer
chips) that can be configured after manufacturing.

● As opposed to a full custom ASIC that requires custom
masks.

● Or a device called a ULA (Uncommitted Logic Array),
which is sort-of programmable, but only in manufacturing.

– These are less expensive than an ASIC in terms of setup
cost, but less flexible than an FPGA since they are
configured at manufacture time.

– Some FPGA vendors (Altera for instance) sell ULAs that are
designed to be similar to their FPGAs, so someone building
a large enough volume of a design can switch from an FPGA
to a semi-custom part and realize some cost savings.

Simple Programmable Logic

● Given a Boolean logic function of N inputs and
M outputs, how could we implement this
function in a way that we could reprogram the
logic circuit if desired?

● Answer: Use memory to store the truth table of
the logic circuit. Then, if we want to change the
behavior of the circuit, all we have to do is
reprogram the memory.

Simple Programmable Logic

● How could this work?
● Let's take a look at a

simple Boolean logic
circuit.

● This circuit has 4
inputs and 2 outputs,
so our truth table will
have 16 rows.

Truth Table for this circuit

Implementing this as memory

● To implement this truth
table in a block of
memory, our inputs A
through D will be the
address.

● The outputs X and Y will
be the data.

● So, our ROM would be
programmed as follows.

Address Data
0 00
1 01
2 01
3 01
4 00
5 01
6 01
7 01
8 00
9 01
A 01
B 01
C 01
D 11
E 11
F 11

What's the point?

● Is this more efficient than actually wiring up 4 logic
gates? Certainly not.

● So why bother?
● Well, what if we wanted to change the behavior of

the circuit.
● With actual logic gates we'd have to replace the

gate. But since this is just a truth table in memory,
all we have to do is rewrite some memory.

Types of Programmable Logic

● There are various programmable logic devices that
increase in performance, capacity, and cost.

● The main types encountered today are CPLDs
(Complex Programmable Logic Devices) and FPGAs
(Field Programmable Gate Arrays).

● There are also smaller, less-complex devices known
as PALs (Programmable Array Logic) and GALs
(Generic Array Logic, basically a reprogrammable
PAL) but these are not commonly used in new
designs.

What's an FPGA?

● Programmable logic, but a lot more advanced than the
simple example we just reviewed.

● FPGAs are composed of three main components
– Programmable Logic Blocks – A look-up table similar to our

truth table example, and some memory (registers).
– Interconnect Blocks – Configurable signal routing logic that can

be used to connect PLBs to each other and to the I/O blocks.
– I/O Blocks – Logic for interfacing to the physical pins on the

FPGA.

● Modern FPGAs often contain other components, but we'll
discuss that later.

Understanding a Simple FPGA

● We'll take a look at the Xilinx
XC2064.

● This is the first commercial FPGA,
from 1985. It contains 64 PLBs,
58 I/O pins, and has a capacity of
1,200 logic gates.

– This means the XC2064 can
replace up to 1,200 individual
AND, OR, etc. gates.

● This explanation won't be all-
inclusive, but if you want more, I'll
have a link to the XC2064
datasheet (which explains how
the chip works in great detail) at
the end of my slides.

XC2064 manufactured in week 46 of
1988, on an Apple IIgs math coprocessor
card. The other large IC on the board is a
Motorola 68881 Floating-Point Unit. The

small IC above the FPGA is a serial
EEPROM that the FPGA loads

configuration data from.

Comb.
Logic

S

R

D Q

>

G

F

X

Y

K
Clock

A
B
C
D

Inputs

Outputs
XC2064 Programmable Logic Block

Redrawn from XC2064 Datasheet

These devices are multiplexers.
They're basically a switch – here, the
switching is controlled by configuration
RAM bits at design time.

XC2064 I/O Block

Pin

QD

>

Output
Enable

Out

In

I/O Clock

On

Off

From
internal

logic

Output
Pins

Interconnect

● The way the XC2064 did it was pretty simple.
– Basically a 'grid' of horizontal and vertical wires with

programmable switching to connect logic blocks to
each other and to I/O blocks.

– Also a few long lines for signals that have to travel a
long distance and/or need minimal skew, and one
global clock line that can be routed to all of the 'B'
and 'K' inputs of the PLBs (or these can use other
clock sources).

– I didn't have time to do detailed diagrams on this,
but we can go through some stuff from the
datasheet at the end if people are interested.

Comparison to modern FPGAs
● Modern FPGAs still incorporate the same basic parts, but typically

more of them.
– For instance, Xilinx's current top of the line FPGA has over 3 million PLBs

(and they're probably bigger than 4 inputs, 2 outputs as well), over 800 I/O
pins, and over 40 megabits of registers just in the PLBs.

● Modern FPGAs also often incorporate some hard logic ranging from
simple things like multipliers to entire ARM CPU cores, floating-point
units, PCIe and Ethernet interfaces, etc.

● Modern FPGAs also often contain block RAM, small (but still larger
than the register in an PLB) blocks of memory that your design can
use. But if you need more RAM than that you're stuck interfacing to an
external RAM chip.
– The Xilinx chip I mentioned earlier has close to half a gigabit of block RAM.

Want to learn more?

● If you feel like taking an entire 12-unit class:
– 18-240 would be a good starting point.

– If you decide you really like this stuff, take 18-447 (Undergraduate Computer
Architecture) and/or consider 18-545 (FPGA design) as a capstone course if
you're an ECE major.

● If you just want to play with Verilog:
– Icarus Verilog and Verilator are both free software (libre and gratis).

– There are plenty of good Verilog references online.

● If you want to play with FPGAs:
– The Computer Club owns a Novena (open hardware project with a fairly nice

ARM CPU and an FPGA) that you're welcome to play with at Hacking Hours.

– And/or you can find basic FPGA development boards relatively inexpensively
<$50 for the really basic stuff, $100-200 for more powerful stuff. Both Xilinx and
Altera provide free (but only as in gratis) development tools for all but their most
expensive FPGAs.

Useful Links

● Xilinx XC2064 Datasheet
– http://www.cmucc.org/~lroop/hdl_talk/xc2064.pdf

● Icarus Verilog (official site)
– http://iverilog.icarus.com/

● Verilator (official site)
– http://www.veripool.org/wiki/verilator

● Recipes for the cookies served at the talk
– http://www.cmucc.org/~lroop/hdl_talk/

● Two obviously named text files.
● Some whole wheat flour was used, and the oatmeal raisin cookies

were made with the full ½ teaspoon of cinnamon and the optional
nutmeg.

http://www.cmucc.org/~lroop/hdl_talk/xc2064.pdf
http://iverilog.icarus.com/
http://www.veripool.org/wiki/verilator
http://www.cmucc.org/~lroop/hdl_talk/

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

