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So, What's the point of this talk?

● To give an overview of hardware description 
languages, and explain how they differ from 
conventional software programming.

● To explain enough digital logic for the idea of 
HDLs to make sense.
– We'll do this first even though it's listed second.

– I apologize to any ECE majors in the room, this will 
sound a lot like an 18-240 lecture but less in depth.

● Unfortunately we can't cover everything.
– There are entire semester-long classes in the ECE 

department about this stuff.



  

Boolean Logic

● Logic Gates – Devices 
that implement the 
Boolean logic functions 
(AND, OR, NOT, XOR, 
etc.)

● Easy to discuss and 
draw on paper, but can 
we make them in the 
real world?



  

Boolean Logic

● Purely mechanical examples:

– AND: If deadbolt is unlocked, 
and doorknob is turned, door 
opens.

– XOR:  Think of a 3 way light 
switch (the kind with switches 
at the top and the bottom of a 
flight of stairs).

● There are also plenty of more 
intentional examples of this:  
Old mechanical adding 
machines, early punchcard 
tabulators, etc.



  

Boolean Logic

● Small-Scale Integration ICs 
(7400 series, 4000 series).

– These chips implement a few 
gates on a small chip.

– Once upon a time, entire 
CPUs and motherboards were 
built out of these.

– Today, they're mostly used 
when only a small amount of 
additional logic is needed in 
some more complex circuit.

74LS10 3x 3-input NAND Gate (in 
somewhat obsolete DIP-14 package)

74LS10 Functional Diagram



  

Is Something Missing Here?

● Interconnected Boolean gates can be used to 
implement any logic function, but there are some 
problems.
– How long does it take for the output to be correct 

after we change inputs?  In theory-land this is 
instantaneous.  In the real world, the laws of physics 
don't allow for that.

– Also, with just logic gates, we have no notion of 
state.  We can't store the result of some function and 
do other things with it.



  

Memory Elements

● There's a lot to explain about memory, but it's 
out of the scope of this talk.

● Instead, we'll just talk about registers as a 
concept.

● Registers act a lot like a variable in a computer 
program.  We can store data in them and 
modify or reuse that data later.



  

Memory Elements

● We can also have arrays of registers.  This is 
basically what RAM looks like from a programmer's 
perspective.

● In the real world it gets a bit more complicated.
– DRAM requires periodic refresh cycles to keep the 

information stored in it.

– Modern computers use a memory hierarchy with levels of 
cache (smaller, faster memory) between the CPU and 
main memory, and swap space (often called 'Virtual 
Memory') on disk for when programs want more memory 
than the system has.

● But we don't need to worry about that now.



  

Clocks

● A clock in digital logic is a 
regular and periodic signal 
used to keep different 
parts of the circuit in time 
with each other.

● The clock in a digital circuit 
functions more like a 
metronome than an actual 
wall clock – its purpose is 
to keep parts of the circuit 
'in time' with each other.

1

0



  

Clocks

● Using clock-controlled 
registers in a complex digital 
circuit lets us deal with the 
problem that combinational 
logic doesn't work instantly.

● Timing in digital circuits can 
get very complex, but for now 
we can just assume that as 
long as we don't run the 
clock faster than the 
combinational logic can work, 
things will be OK.

Combinational
Logic

Register

Combinational
Logic

Register

Clock

Note:  Clouds of combinational logic have nothing to do with Cloud Computing.



  

Example – Mixing Logic and 
Registers

● Say we want to add up a 
list of numbers.

● Using just combinational 
logic, we can construct an 
adder.  Adding 2 terms is 
easy, 3 is doable, but 
beyond a certain point, 
this doesn't really make 
sense.

1,000

3,272

602

14,860

+ 2,713

---------

???



  

Example – Mixing Logic and 
Registers

● A 2-input adder will be 
enough to get the job done if 
we add some memory to the 
design.

● We can store the output of the 
adder in the register, and then 
use the register's output as 
one of the inputs to the adder.

● The other input will be the 
numbers that we need to add.

+

Output Register

BA

Input Data



  

Example – Mixing Logic and 
Registers

● Wait?  We're going to use the 
register as both an input and 
the output?!?

● Sure, we can do this, but we 
have to be careful.

● We need to be able to store 0 
in the register on reset.

● And we need to clock the 
register such that it will latch 
the output of the adder only 
when the adder is done with 
each addition.

+

Output Register

BA

Input Data

Reset

Done



  

IC Design before automation

● Designing an IC is a complex process.  You have to design 
the high-level logic, and then translate that into physical 
layout (actual transistors on silicon).

● Before automation tools, this was done entirely by hand.
– Block diagrams were drawn on paper.
– Gate-Level 'simulation' was done with breadboards or wire wrap 

and lots of individual logic ICs.
– Actual silcon layout was done with colored tape and rulers on 

very large pieces of paper at many many times actual size, and 
then photo-reduced into masks for making chips.



  

IC Design before automation

● Manual design 
worked fine for 
simple things.  
Most 8-bit CPUs 
like the 6502 and 
8080 would have 
been designed 
this way.

● It was still quite 
involved and time-
consuming 
though.

MOS Technology 6502 layout (1976).  
This die contains 3,510 individual 

transistors.



  

Intel Sandy Bridge CPU with integrated graphics (2011).  This chip includes four x86-64 CPU 
cores, an L3 cache, GPU, and memory controller all on a single die.  This whole die contains 

over 1 billion individual transistors (compare to 3,510 in the 6502).



  

IC Design before automation

● Manual design at the 
silicon level is still 
done for repetitive stuff 
where even a small 
improvement over 
what automation can 
do is significant – 
mostly memory 
devices like DRAM 
and Flash.

4x4 Array of DRAM cells



  

Micron MT4C1024 1Mbit DRAM (Circa 1990).  Most of the space on the chip is taken up by 
a bunch of identical looking blocks of DRAM cells.  This is a lot larger than our 4x4 cell 
example (1 million cells arranged in a 2048 x 512 array as opposed to 16), but still tiny 

compared to a modern DRAM IC which can easily contain 4Gbits or more.



  

IC Design Automation

● As you can see, designing a modern IC by 
hand simply wouldn't be practical.

● So, as computers became more powerful, 
Electronic Design Automation (EDA) tools were 
developed, and used to design subsequent 
generations of computers.

● Which then led to more complex computers, 
and more complex design tools for designing 
the next generation of computers.



  

Introduction – Hardware Description 
Languages

● We'll talk more about the physical logic later 
when we get to FPGAs.

● A Hardware Description Language (HDL) is 
similar to a programming language, but is used 
to model the behavior of hardware.

● The most common HDLs are Verilog and VHDL. 
 I'm only going to discuss Verilog here since it's 
the language used at CMU, and the one I am 
most familiar with.



  

Basic Verilog

● I'm not going to start with “Hello, 
World”.

● That's actually kind of tricky to 
do in hardware.

– We'd have to deal with 
interfacing to a display device.

– Or we could cheat and print 
“Hello, World” on a piece of 
colored glass and put a light 
bulb behind it.  But that would 
be boring.

● Here's some basic Verilog.  
Now let's go over what it does.

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder



  

Basic Syntax

● Looks a lot like C.
● With enough 

differences to be 
annoying.

● 'begin' and 'end' 
instead of curly 
braces.

● Except when you use 
other words.
– Module/endmodule is 

the big one.

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder



  

Basic Syntax

● Modules are like a class in an 
object-oriented language.

● Modules can easily be 
reused, or instantiated inside 
other modules.

● Can you write an entire large 
design in one module?  Sure, 
but that's basically the same 
as writing an entire large C 
program inside int main().

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder



  

Input and Output

● An input to a module is a signal 
that comes from outside the 
module.

● An output of a module is a 
signal that the module drives for 
the outside world.

● There's also inout, which is 
both.  With this, you have to be 
careful not to have multiple 
things driving the same signal 
at the same time.

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder

Inputs and outputs 
of the module are 
like parameters of 
a function, except 
the 'return values' 
are the outputs.



  

Signal Types

● There are many types of 
signal in Verilog, but I'm 
just going to cover wire 
and reg.

● A wire behaves like a 
literal piece of wire.  
Wires have no sense of 
memory, and are driven 
by whatever they're 
connected to.

● A reg behaves like a 
latch, or a variable in a 
software language.

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder

This is a 4-bit wire 
named 'a'.

This is a 5-bit reg 
named 'out'.



  

Signal Widths

● Software languages typically 
have different size types (char, 
int, long, double, etc.)

● Since we're working in hardware 
here, we have to manually specify 
the width of signals in bits.

● When we declare a signal (wire, 
reg, etc.) we do this by putting 
some numbers in square 
brackets after the type.

● When we assign a value to 
something, we use the notation 
N'base.

● If your signal isn't wide enough to 
hold a particular value, the extra 
bits get cut off.

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder

This is a 4-bit wire 
named 'a'.

This is a 5-bit reg 
named 'out'.

This assigns the 
value 0 (5 bits 
wide) to 'out'.



  

Useful Tip

● So what's this `default_nettype none 
business?

● One annoying default in Verilog is that if 
you don't explicitly declare a signal, it is 
assumed to be a 1-bit wire.

● This can lead to very annoying bugs if you 
make a typo in a signal name.

● The ` character denotes a preprocessor 
directive (similar to # in C).  
default_nettype none switches the default 
net type from wire to none, so if you typo 
a signal name you will get a compiler error 
instead of a broken design.

● Use it.  I guarantee it will save you from 
hours of head scratching and quality time 
spent with the waveform viewer that could 
be better spent doing other things.

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder

This simple line of 
code will save you 
much anguish.



  

Always Blocks

● Code inside an always block is 
evaluated by the simulator (or 
implemented in the FPGA) 
whenever items in its sensitivity 
list change.

● The sensitivity list is the list of 
items inside parentheses after the 
@ symbol.

● This list can contain any number of 
signals, as well as a few conditions 
on the signals.  The main ones are 
posedge and negedge, which 
mean that the block should only be 
evaluated on the positive or 
negative edge of the signal, 
respectively.

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder



  

What's an edge?

● An edge is a transition in a signal.  We usually think about edges when we're 
dealing with clocks.

● A positive edge is a transition from low (0) to high (1).

● A negative edge is a transition from high (1) to low (0).

● Signals that change on an edge (for instance the stuff in our always @ (posedge 
clock) block are known as edge-triggered signals.

Clock

1

0

Positive Edge Negative Edge



  

What's going on inside here?

● In our basic example, there's one 
if...else statement inside our 
always block.  What it does is 
pretty simple.

● The behavior for if (reset) will 
happen if the reset signal is high.  
Here, we set the out register to all 
zeros, like hitting the clear button 
on a calculator.

● The else block handles the case 
where reset is not active.  Here, 
out is assigned to be the value of 
a+b.  Remember that this is within 
an always @ (posedge clock) 
block, so the output at the out 
register only changes on the clock 
edge, and the a and b inputs must 
be valid on the clock edge.

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder



  

So what's this <= thing?

● You may have noticed that the 
variable assignments inside the 
block use a “<=” operator instead of 
just “=”.

● This indicates non-blocking 
assignment, which means that the 
assignments are not dependent on 
any other assignments during the 
same clock period.

● Standard 'good practices' are to use 
non-blocking assign in clocked logic 
(for instance always @ (posedge 
clock)), and blocking assign in 
combinational logic (for instance a 
continuous assign statement).

● You can read more about this at 
http://www.asic-world.com/tidbits/blocking.html

`default_nettype none

module fourbit_adder(

  input wire[3:0] a,

  input wire[3:0] b,

  input wire reset,

  input wire clock,

  output reg[4:0] out

);

  always @ (posedge clock) begin

    if(reset) begin

      out <= 5'b0;

    end else begin

      out <= a + b;

    end

  end

endmodule //fourbit_adder

http://www.asic-world.com/tidbits/blocking.html


  

OK, so how does this become 
hardware?

● We've seen some basic Verilog code, but how does this 
code turn into actual hardware?

● We could design a custom IC, but the initial set-up costs 
for that are on the order of millions of dollars.

● We could manually wire together a bunch of 7400-
series logic like it's 1985, but then why bother with 
Verilog?

● Or, we could use some form of programmable logic.



  

Definition: Programmable Logic

● Programmable logic circuits are digital circuits (computer 
chips) that can be configured after manufacturing.

● As opposed to a full custom ASIC that requires custom 
masks.

● Or a device called a ULA (Uncommitted Logic Array), 
which is sort-of programmable, but only in manufacturing.

– These are less expensive than an ASIC in terms of setup 
cost, but less flexible than an FPGA since they are 
configured at manufacture time.

– Some FPGA vendors (Altera for instance) sell ULAs that are 
designed to be similar to their FPGAs, so someone building 
a large enough volume of a design can switch from an FPGA 
to a semi-custom part and realize some cost savings.



  

Simple Programmable Logic

● Given a Boolean logic function of N inputs and 
M outputs, how could we implement this 
function in a way that we could reprogram the 
logic circuit if desired?

● Answer:  Use memory to store the truth table of 
the logic circuit.  Then, if we want to change the 
behavior of the circuit, all we have to do is 
reprogram the memory.



  

Simple Programmable Logic

● How could this work?
● Let's take a look at a 

simple Boolean logic 
circuit.

● This circuit has 4 
inputs and 2 outputs, 
so our truth table will 
have 16 rows.



  

Truth Table for this circuit



  

Implementing this as memory

● To implement this truth 
table in a block of 
memory, our inputs A 
through D will be the 
address.

● The outputs X and Y will 
be the data.

● So, our ROM would be 
programmed as follows.

Address Data
0 00
1 01
2 01
3 01
4 00
5 01
6 01
7 01
8 00
9 01
A 01
B 01
C 01
D 11
E 11
F 11



  

What's the point?

● Is this more efficient than actually wiring up 4 logic 
gates?  Certainly not.

● So why bother?  
● Well, what if we wanted to change the behavior of 

the circuit.
● With actual logic gates we'd have to replace the 

gate.  But since this is just a truth table in memory, 
all we have to do is rewrite some memory.



  

Types of Programmable Logic

● There are various programmable logic devices that 
increase in performance, capacity, and cost.

● The main types encountered today are CPLDs 
(Complex Programmable Logic Devices) and FPGAs 
(Field Programmable Gate Arrays).

● There are also smaller, less-complex devices known 
as PALs (Programmable Array Logic) and GALs 
(Generic Array Logic, basically a reprogrammable 
PAL) but these are not commonly used in new 
designs.



  

What's an FPGA?

● Programmable logic, but a lot more advanced than the 
simple example we just reviewed.

● FPGAs are composed of three main components
– Programmable Logic Blocks – A look-up table similar to our 

truth table example, and some memory (registers).
– Interconnect Blocks – Configurable signal routing logic that can 

be used to connect PLBs to each other and to the I/O blocks.
– I/O Blocks – Logic for interfacing to the physical pins on the 

FPGA.

● Modern FPGAs often contain other components, but we'll 
discuss that later.



  

Understanding a Simple FPGA

● We'll take a look at the Xilinx 
XC2064.

● This is the first commercial FPGA, 
from 1985.  It contains 64 PLBs, 
58 I/O pins, and has a capacity of 
1,200 logic gates.

– This means the XC2064 can 
replace up to 1,200 individual 
AND, OR, etc. gates.

● This explanation won't be all-
inclusive, but if you want more, I'll 
have a link to the XC2064 
datasheet (which explains how 
the chip works in great detail) at 
the end of my slides.

XC2064 manufactured in week 46 of 
1988, on an Apple IIgs math coprocessor 
card.  The other large IC on the board is a 
Motorola 68881 Floating-Point Unit.  The 

small IC above the FPGA is a serial 
EEPROM that the FPGA loads 

configuration data from.



  

Comb.
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S
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>
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F

X

Y

K
Clock
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D

Inputs

Outputs
XC2064 Programmable Logic Block

Redrawn from XC2064 Datasheet

These devices are multiplexers.  
They're basically a switch – here, the 
switching is controlled by configuration 
RAM bits at design time.



  

XC2064 I/O Block

Pin

QD

>

Output 
Enable

Out

In

I/O Clock

On

Off

From 
internal 

logic

Output 
Pins



  

Interconnect

● The way the XC2064 did it was pretty simple.
– Basically a 'grid' of horizontal and vertical wires with 

programmable switching to connect logic blocks to 
each other and to I/O blocks.

– Also a few long lines for signals that have to travel a 
long distance and/or need minimal skew, and one 
global clock line that can be routed to all of the 'B' 
and 'K' inputs of the PLBs (or these can use other 
clock sources).

– I didn't have time to do detailed diagrams on this, 
but we can go through some stuff from the 
datasheet at the end if people are interested.



  

Comparison to modern FPGAs
● Modern FPGAs still incorporate the same basic parts, but typically 

more of them.
– For instance, Xilinx's current top of the line FPGA has over 3 million PLBs 

(and they're probably bigger than 4 inputs, 2 outputs as well), over 800 I/O 
pins, and over 40 megabits of registers just in the  PLBs.

● Modern FPGAs also often incorporate some hard logic ranging from 
simple things like multipliers to entire ARM CPU cores, floating-point 
units, PCIe and Ethernet interfaces, etc.

● Modern FPGAs also often contain block RAM, small (but still larger 
than the register in an PLB) blocks of memory that your design can 
use.  But if you need more RAM than that you're stuck interfacing to an 
external RAM chip.
– The Xilinx chip I mentioned earlier has close to half a gigabit of block RAM.



  

Want to learn more?

● If you feel like taking an entire 12-unit class:
– 18-240 would be a good starting point.

– If you decide you really like this stuff, take 18-447 (Undergraduate Computer 
Architecture) and/or consider 18-545 (FPGA design) as a capstone course if 
you're an ECE major.

● If you just want to play with Verilog:
– Icarus Verilog and Verilator are both free software (libre and gratis).

– There are plenty of good Verilog references online.

● If you want to play with FPGAs:
– The Computer Club owns a Novena (open hardware project with a fairly nice 

ARM CPU and an FPGA) that you're welcome to play with at Hacking Hours.

– And/or you can find basic FPGA development boards relatively inexpensively 
<$50 for the really basic stuff, $100-200 for more powerful stuff.  Both Xilinx and 
Altera provide free (but only as in gratis) development tools for all but their most 
expensive FPGAs.



  

Useful Links

● Xilinx XC2064 Datasheet
– http://www.cmucc.org/~lroop/hdl_talk/xc2064.pdf

● Icarus Verilog (official site)
– http://iverilog.icarus.com/

● Verilator (official site)
– http://www.veripool.org/wiki/verilator

● Recipes for the cookies served at the talk
– http://www.cmucc.org/~lroop/hdl_talk/

● Two obviously named text files.
● Some whole wheat flour was used, and the oatmeal raisin cookies 

were made with the full ½ teaspoon of cinnamon and the optional 
nutmeg.

http://www.cmucc.org/~lroop/hdl_talk/xc2064.pdf
http://iverilog.icarus.com/
http://www.veripool.org/wiki/verilator
http://www.cmucc.org/~lroop/hdl_talk/


  

Any Questions?
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